Received 5 January 2005 Accepted 10 January 2005

Online 15 January 2005

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di-Mei Chen, Xin-Hua Li,* Hong-Ping Xiao and Mao-Lin Hu

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.004 Å R factor = 0.073 wR factor = 0.157 Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,2'-Bipyridinium 5-nitroisophthalate 5-nitroisophthalic acid dihydrate

The title compound, $C_{10}H_9N_2^+ \cdot C_8H_4NO_6^- \cdot C_8H_5NO_6 \cdot 2H_2O$, consists of singly protonated 2,2'-bipyridinium cations, 5nitroisophthalate anions, 5-nitroisophthalic acid and water molecules of crystallization, linked by N-H···O and O- $H \cdots O$ hydrogen bonds. The moieties are linked by multiple hydrogen bonds into an undulating sheet structure.

Comment

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Directional intermolecular interactions are the primary tools in achieving this goal and hydrogen bonding is currently the best among them (Zaworotko, 1997; Braga & Grepioni, 2000). In this paper, we report the structure of the title compound, (I).

Compound (I) consists of singly protonated 2,2'-bipyridinium cations, 5-nitroisophthalate anions, and 5-nitroisophthalic acid and solvent water molecules (Fig. 1). 2,2'-Bipyridinium cations are linked to the carboxy groups of the 5-nitroisophthalic acid molecules through N-H···O

Figure 1 © 2005 International Union of Crystallography The asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Printed in Great Britain - all rights reserved

Perspective view of the layer structure of (I), assembled *via* hydrogen bonds, which are shown as dashed lines.

hydrogen-bonding interactions. The 5-nitroisophthalate anions and solvent water molecules form hydrogen bonds with both the carboxylic acid and nitro groups (Table 2). The cations, anions, solvent water molecules and 5-nitroisophthalic acid molecules interact through multimolecular interactions generating an undulating layer structure (Fig. 2).

Experimental

The title compound was synthesized by the hydrothermal method from a mixture of 5-nitroisophthalic acid (0.3 mmol), $La_2(SO_4)_3 \cdot 9H_2O$ (0.3 mmol), 2,2-bipyridine (0.3 mmol) and water (8.0 ml) in a 15 ml Telfon-lined stainless steel reactor. The solution was heated at 423 K for 4 d. After reaction, the vessel was cooled slowly to room temperature to give colorless crystals. The prismatic crystals were collected and washed with distilled water and dried in air.

Crystal data

$C_{10}H_9N_2^+ C_8H_5NO_6^-$	$D_x = 1.538 \text{ Mg m}^{-3}$
$C_8H_4NO_6\cdot 2H_2O$	Mo $K\alpha$ radiation
$M_r = 614.48$	Cell parameters from 4810
Monoclinic, $P2_1/c$	reflections
a = 8.3294 (6) Å	$\theta = 1.7-25.3^{\circ}$
b = 22.4059 (16) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 14.5461 (11) Å	T = 298 (2) K
$\beta = 102.2410 \ (10)^{\circ}$	Prism, colorless
$V = 2653.0 (3) \text{ Å}^3$	$0.35 \times 0.20 \times 0.17 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.957, T_{max} = 0.979$ 14108 measured reflections

Refinement

Table 1

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.157$ S = 1.234810 reflections 412 parameters H atoms treated by a mixture of independent and constrained refinement 4810 independent reflections 4201 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 25.3^{\circ}$ $h = -9 \rightarrow 9$ $k = -26 \rightarrow 25$ $l = -11 \rightarrow 17$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.051P)^2 \\ &+ 1.822P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table I				
Selected	geometric	parameters	(Å,	°).

01-C11	1.238 (3)	O10-C26	1.297 (3)
O2-C11	1.251 (3)	O11-N4	1.202 (3)
O3-C18	1.309 (4)	O12-N4	1.205 (3)
O4-C18	1.202 (3)	N1-C1	1.332 (4)
O5-N3	1.214 (3)	N1-C5	1.340 (4)
O6-N3	1.216 (3)	N2-C10	1.327 (4)
O7-C19	1.295 (3)	N2-C6	1.346 (4)
O8-C19	1.195 (3)	N3-C16	1.473 (4)
O9-C26	1.196 (3)	N4-C24	1.475 (3)
C1-N1-C5	123.8 (3)	N2-C10-C9	123.7 (3)
C10-N2-C6	117.0 (3)	O1-C11-O2	124.0 (3)
O5-N3-O6	123.5 (3)	O1-C11-C12	119.4 (2)
O5-N3-C16	117.9 (3)	O2-C11-C12	116.6 (2)
O6-N3-C16	118.7 (2)	O4-C18-O3	124.8 (3)
O11-N4-O12	123.9 (3)	O4-C18-C14	122.5 (3)
O11-N4-C24	118.3 (3)	O3-C18-C14	112.7 (2)
O12-N4-C24	117.8 (2)	O8-C19-O7	123.7 (3)
N1-C1-C2	119.3 (3)	O8-C19-C20	122.7 (3)
N1-C5-C4	117.4 (3)	O7-C19-C20	113.7 (2)
N1-C5-C6	116.0 (2)	O9-C26-O10	124.8 (3)
N2-C6-C7	122.6 (3)	O9-C26-C22	120.8 (2)
N2-C6-C5	114.2 (2)	O10-C26-C22	114.4 (2)

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
O3−H3A···O14 ⁱ	0.82	1.79	2.582 (4)	162
$O7-H7A\cdots O1^{ii}$	0.82	1.77	2.567 (3)	165
O10-H10A···O2 ⁱⁱⁱ	0.82	1.74	2.553 (3)	170
$O13-H13A\cdots O8^{iv}$	0.824 (12)	2.174 (13)	2.986 (3)	168 (3)
O13−H13B···O10	0.83 (3)	2.21 (2)	2.944 (4)	149 (2)
$O14-H14A\cdots O12^{iii}$	0.82 (4)	2.55 (4)	3.042 (4)	120 (4)
O14−H14B···O13	0.82 (4)	2.02 (4)	2.830 (5)	171 (4)
$N1 - H1A \cdots O9^{v}$	0.86	2.06	2.746 (4)	136

 $1 - x, y - \frac{1}{2}, \frac{1}{2} - z;$ (v) $1 - x, \frac{1}{2} + y, \frac{3}{2} - z.$

The water H atoms were refined subject to the restraint O-H = 0.82 (1) Å. The other H atoms were positioned geometrically (with orientation to fit the observed electron density for carboxyl O-H) and allowed to ride on their parent atoms at distances of 0.82 (O-H), 0.86 (N-H) and 0.93 Å (C-H), with $U_{iso}(H) = 1.5U_{eq}(O)$ and 1.2 $U_{eq}(N \text{ or } C)$. Three carboxyl H atoms are positioned geometrically,

the other carboxylic H atom cannot be positioned geometrically, and this H atom was added to atom N1 atom using the HFIX 43 instruction as no hydrogen bond was indicated by *SHELXL97*.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We acknowledge financial support by Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294), the education office of Zhejiang province (No. 20040336) and '551' Distinguished Person Foundation of Wenzhou.

References

- Braga, D. & Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.
- Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1386. Bruker (2002) SMAPT SAINT SADAPS and SHELYTL Bruker AXS Inc.
- Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2315.
- Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1476.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1976). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zaworotko, M. J. (1997). Nature (London), 386, 220-226.