Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di-Mei Chen, Xin-Hua Li,* Hong-Ping Xiao and Mao-Lin Hu

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.073$
$w R$ factor $=0.157$
Data-to-parameter ratio $=11.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,2'-Bipyridinium 5-nitroisophthalate 5-nitroisophthalic acid dihydrate

The title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{6}{ }^{-} \cdot \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, consists of singly protonated $2,2^{\prime}$-bipyridinium cations, 5nitroisophthalate anions, 5-nitroisophthalic acid and water molecules of crystallization, linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The moieties are linked by multiple hydrogen bonds into an undulating sheet structure.

Comment

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Directional intermolecular interactions are the primary tools in achieving this goal and hydrogen bonding is currently the best among them (Zaworotko, 1997; Braga \& Grepioni, 2000). In this paper, we report the structure of the title compound, (I).

Received 5 January 2005
Accepted 10 January 2005 Online 15 January 2005

Compound (I) consists of singly protonated $2,2^{\prime}$-bipyridinium cations, 5 -nitroisophthalate anions, and 5-nitroisophthalic acid and solvent water molecules (Fig. 1). 2,2'Bipyridinium cations are linked to the carboxy groups of the 5-nitroisophthalic acid molecules through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$

Figure 1
The asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Figure 2
Perspective view of the layer structure of (I), assembled via hydrogen bonds, which are shown as dashed lines.
hydrogen-bonding interactions. The 5-nitroisophthalate anions and solvent water molecules form hydrogen bonds with both the carboxylic acid and nitro groups (Table 2). The cations, anions, solvent water molecules and 5-nitroisophthalic acid molecules interact through multimolecular interactions generating an undulating layer structure (Fig. 2).

Experimental

The title compound was synthesized by the hydrothermal method from a mixture of 5-nitroisophthalic acid (0.3 mmol), $\mathrm{La}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{mmol})$, 2,2-bipyridine $(0.3 \mathrm{mmol})$ and water $(8.0 \mathrm{ml})$ in a 15 ml Telfon-lined stainless steel reactor. The solution was heated at 423 K for 4 d . After reaction, the vessel was cooled slowly to room temperature to give colorless crystals. The prismatic crystals were collected and washed with distilled water and dried in air.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{6}{ }^{-} .$.
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=614.48$
Monoclinic, $P 2_{1} / c$
$a=8.3294(6) \AA$
$b=22.4059(16) \AA$
$c=14.5461(11) \AA$
$\beta=102.2410(10)^{\circ}$
$V=2653.0(3) \AA^{3}$
$Z=4$

$$
D_{x}=1.538 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 4810 reflections
$\theta=1.7-25.3^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colorless
$0.35 \times 0.20 \times 0.17 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS;
Bruker, 2002)
$T_{\text {min }}=0.957, T_{\text {max }}=0.979$
14108 measured reflections
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.073$
$w R\left(F^{2}\right)=0.157$
$S=1.23$
4810 reflections
412 parameters
H atoms treated by a mixture of independent and constrained refinement

4810 independent reflections 4201 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.3^{\circ}$
$h=-9 \rightarrow 9$
$k=-26 \rightarrow 25$
$l=-11 \rightarrow 17$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.051 P)^{2}\right. \\
& \quad+1.822 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}-0.24 \mathrm{e}^{-3} \quad \text {. }
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C11	$1.238(3)$	O10-C26	$1.297(3)$
O2-C11	$1.251(3)$	O11-N4	$1.202(3)$
O3-C18	$1.309(4)$	O12-N4	$1.205(3)$
O4-C18	$1.202(3)$	N1-C1	$1.332(4)$
O5-N3	$1.214(3)$	N1-C5	$1.340(4)$
O6-N3	$1.216(3)$	N2-C10	$1.327(4)$
O7-C19	$1.295(3)$	N2-C6	$1.346(4)$
O8-C19	$1.195(3)$	N3-C16	$1.473(4)$
O9-C26	$1.196(3)$	N4-C24	$1.475(3)$
C1-N1-C5	$123.8(3)$	N2-C10-C9	$123.7(3)$
C10-N2-C6	$117.0(3)$	O1-C11-O2	$124.0(3)$
O5-N3-O6	$123.5(3)$	O1-C11-C12	$119.4(2)$
O5-N3-C16	$117.9(3)$	O2-C11-C12	$116.6(2)$
O6-N3-C16	$118.7(2)$	O4-C18-O3	$124.8(3)$
O11-N4-O12	$123.9(3)$	O4-C18-C14	$122.5(3)$
O11-N4-C24	$118.3(3)$	O3-C18-C14	$112.7(2)$
O12-N4-C24	$117.8(2)$	O8-C19-O7	$123.7(3)$
N1-C1-C2	$119.3(3)$	O8-C19-C20	$122.7(3)$
N1-C5-C4	$117.4(3)$	O7-C19-C20	$113.7(2)$
N1-C5-C6	$116.0(2)$	O9-C26-O10	$124.8(3)$
N2-C6-C7	$122.6(3)$	O9-C26-C22	$120.8(2)$
N2-C6-C5	$114.2(2)$	O10-C26-C22	$114.4(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 14^{\mathrm{i}}$	0.82	1.79	2.582 (4)	162
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 1^{\text {ii }}$	0.82	1.77	2.567 (3)	165
$\mathrm{O} 10-\mathrm{H} 10 A^{\cdots} \cdot \mathrm{O} 2{ }^{\text {iii }}$	0.82	1.74	2.553 (3)	170
$\mathrm{O} 13-\mathrm{H} 13 A \cdots \mathrm{O}^{\text {iv }}$	0.824 (12)	2.174 (13)	2.986 (3)	168 (3)
$\mathrm{O} 13-\mathrm{H} 13 \mathrm{~B} \cdots \mathrm{O} 10$	0.83 (3)	2.21 (2)	2.944 (4)	149 (2)
$\mathrm{O} 14-\mathrm{H} 14 A \cdots \mathrm{O} 2^{\text {iii }}$	0.82 (4)	2.55 (4)	3.042 (4)	120 (4)
O14-H14B . . O13	0.82 (4)	2.02 (4)	2.830 (5)	171 (4)
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {v }}$	0.86	2.06	2.746 (4)	136
Symmetry codes: (i) $x-1, y, z$; (ii) $1-x, 1-y,-z$; (iii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $1-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (v) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$.				

The water H atoms were refined subject to the restraint $\mathrm{O}-\mathrm{H}=$ 0.82 (1) \AA. The other H atoms were positioned geometrically (with orientation to fit the observed electron density for carboxyl $\mathrm{O}-\mathrm{H}$) and allowed to ride on their parent atoms at distances of $0.82(\mathrm{O}-\mathrm{H})$, $0.86(\mathrm{~N}-\mathrm{H})$ and $0.93 \AA(\mathrm{C}-\mathrm{H})$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ and $1.2 U_{\text {eq }}(\mathrm{N}$ or C). Three carboxyl H atoms are positioned geometrically,

organic papers

the other carboxylic H atom cannot be positioned geometrically, and this H atom was added to atom N1 atom using the HFIX 43 instruction as no hydrogen bond was indicated by SHELXL97.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294), the
education office of Zhejiang province (No. 20040336) and '551' Distinguished Person Foundation of Wenzhou.

References

Braga, D. \& Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.
Braga, D., Grepioni, F. \& Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1386.
Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2315.
Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1476.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1976). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zaworotko, M. J. (1997). Nature (London), 386, 220-226.

